# Out-of-distribution Analysis and Robustness of Deep Neural Networks

#### June 9, 2023 SEMLA - Montreal

Ettore Merlo, Zhenyu Yang, Mira Marhaba



## Projects

• DEEL

- Dependable, Certifiable, and Explainable Artificial Intelligence for Critical Systems

- https://www.deel.ai/
- Adimor (NSERC, CRIAQ, GHGSAT)

- Tests and Robustness for AI-Based Image Recognition for Emission Monitoring Satellites

- //www.ghgsat.com/

#### **DNN Testing and Robustness**

- Research: white-box profiling of neural net computation
  - Measure / assess neuron coverage profiles in training/test sets
  - Measure / compare neuron coverage profiles during classification
- We want to relate coverage profiles to how results of classification can be trusted
- Detect "unusual reasoning"

## Method

- Extract neuron activation levels: Computational Profile
- Non-parametric approach
- Compute bin probabilities using the bin frequencies

$$p(b, i, j, X, k) = \frac{1}{\mid X \mid \cdot \mid K \mid} \cdot bFreq(b, i, j, X, k)$$

• Estimate the maximum likelihood (joint probability of all neurons in a layer)

$$L(y, j, k, X) = \prod_{i} p(b, i, j, X, k)$$

- Convert to logarithmic values (since the joint probabilities are small)
- Distance ensures that the numbers are all >= 0

$$dist(y, j, k, X) = -\sum_{i} log(p(b, i, j, X, k))$$

• High distance low probabilities input not likely to present profile close to training

#### **OOD** Detection

• Penultimate layer:

$$archDist(y, k, a) = dist(y, N - 1, k, a)$$

• Average and std variation of training set:

$$refArchAvg(k,a) = \frac{1}{\mid X'_{k, a} \mid} \cdot \sum_{x \in X'_{k, a}} archDist(x,k,a)$$
$$refArchStdVar(k,a) = \sqrt{\frac{\sum_{x \in X'_{k, a}} (archDist(x,k,a) - refArchAvg(k,a))^2}{\mid X'_{k, a} \mid}}$$

• Sigma-Normalized Units:

$$normArchDist(y, k, a) = \frac{archDist(y, k, a)}{refArchStdVar(k, a)}$$

#### **OOD** Detection

• OOD Comparison of a single input:

OOD(y, k, a) = normArchDist(y, k, a) > sepTh(k, a)

• InD Comparison of a single input:

 $InD(y,k,a) = \neg OOD(y,k,a) = normArchDist(y,k,a) <= sepTh(k,a)$ 

## **Adversarial Images**

• Images from MNIST-Fashion data



- Experiment Datasets:
  - 1. Training set
  - 2. Test set
  - 3. Random set (noise)



4. Adversarial Images - Fast Gradient Method, Carlini & Wagner,

DeepFool, Jacobian-Based Saliency Maps



• Considered only the last layer before the output layer

#### Visualization Examples: Classes 1, 6, 8



Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

#### Distance Visualization: Classes 0 – 4



Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

#### Distance Visualization: Classes 5 – 9



Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

#### Linear Best Joint Separability

|       | class 0 |        | class 1 |        | class 2 |        | class 3 |        | class 4 |        |
|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|
|       | train   | adv    |
| rnd   | 0.9908  | 0.9908 | 0.9998  | 1      | 0.9936  | 0.9938 | 0.9998  | 1      | 0.9956  | 0.9957 |
| fgrad | 0.9911  | 0.9915 | 0.9998  | 1      | 0.9917  | 0.9917 | 0.995   | 0.995  | 0.9912  | 0.9912 |
| cw    | 0.7554  | 0.7555 | 0.9512  | 0.9518 | 0.6837  | 0.6837 | 0.7108  | 0.711  | 0.6132  | 0.6133 |
| df    | 0.7378  | 0.7379 | 0.933   | 0.9355 | 0.6145  | 0.6145 | 0.6624  | 0.6624 | 0.6354  | 0.6355 |
| jsma  | 0.8141  | 0.8142 | 0.9333  | 0.9333 | 0.8161  | 0.8163 | 0.8016  | 0.8016 | 0.8292  | 0.8292 |

|       | class 5 |        | class 6 |        | class 7 |        | class 8 |        | class 9 |        |
|-------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|
|       | train   | adv    |
| rnd   | -       | -      | 0.9808  | 0.9808 | -       | -      | 0.9775  | 0.9775 | 0.9998  | 1      |
| fgrad | 0.9763  | 0.9793 | 0.9813  | 0.9814 | 0.9998  | 1      | 0.9805  | 0.9806 | 0.9998  | 1      |
| cw    | 0.5961  | 0.5964 | 0.5879  | 0.588  | 0.8726  | 0.8726 | 0.8412  | 0.8419 | 0.785   | 0.7851 |
| df    | 0.5568  | 0.5569 | 0.841   | 0.8411 | 0.8047  | 0.8048 | 0.9335  | 0.9336 | 0.8562  | 0.8562 |
| jsma  | 0.6133  | 0.6134 | 0.7212  | 0.7214 | 0.9101  | 0.9101 | 0.656   | 0.656  | 0.9174  | 0.9174 |

## **Affine Transformations**

• Images from MNIST-Fashion data



- Experiment Datasets:
  - 1. Training set
  - 2. Affine transformations
    - Corner Rotations
    - Center Rotations
    - X,Y Translations



Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

### **Transformations: Example Visualizations**



**Center Rotations** 

Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

## **Transformations: Example Visualizations**



#### **Translations**



Ettore Merlo, Zhenyu Yang, Mira Marhaba © 2021 - 2023, Polytechnique Montreal

# Discussion

- Adversarial Attacks
  - Different distribution for each type of attack
  - Differences in behaviour between each class
- Affine Transformations:
  - The more we transform, the further we get from the average of the train set
  - We are able to identify the cases that are the most aggressive and thus have very similar characteristics to our starting images
  - Differences in behaviour depending on true class and on predicted class

## **Remarkable Points**

- Correctly identified 70%-90% of OOD cases (with 10%-30% unrecoverable misclassifications)
- Comparable with previous approaches (SADL)
- Preserves performance without need of a secondary classifier trained on outliers or on errors

# **Technical Conclusions**

- Adversarial Attacks: relatively high recognition of adversarial cases
- Affine transformations: exercise different network paths/profiles
- Both can be considered as "aggressive" test cases
- Potential advantages
  - Measurable robustness
    - Unlikely and unusual coverage profiles are detected
  - Linearly separable categories of coverage profiles
    - Robustness evaluation could be based on separability thresholds and risk levels in avionics domain

# Applications

- ML reliability assessment
- Combined Human-Machine Interaction
- ML artefacts evaluation, assessment, testing
- Performance auditing

## **Future Research**

- Multiple architectures
- Multiple datasets
- Investigate different schemes of likelihood based separability (best, fixed, training set variance, etc.)
- Different hyperparameters for attacks
- Ensemble methods on multiple models: Boosting, Bagging, Stacking

## Future Research

- Deeper investigation of class-dependent separation
- Disregard reasoning coming from inactive or weakly activated neurons, or from unusual profiles during training
- Combining OOD of network input data with OOD of computational profiles
- Investigate transferability of adversarial attacks across networks and OOD

## **Questions?** Comments?