
Open and responsible development of
Large Language Models for code

BigCode

Raymond Li | Research Engineer @ ServiceNow

Today’s talk

The BigCode Community1

2

3

The Stack

StarCoder

1. The BigCode community

BigCode: open-scientific collaboration

We are building LLMs for
code in a collaborative
way:

- 500+ participants
- 30+ countries

Developing Code LLMs is not only a technical problem!

● Consent of data subjects
○ Do machine learning models comply with copyright laws?

● Privacy risks
○ Scraped data likely contains personal identifiable information

● Software safety and security
○ Code LLMs may be used to generate malware or may provide code

suggestions that are less secure

More info on the Governance Card: https://hf.co/datasets/bigcode/governance-card

Closed development of LLMs

● Model only available through API, which limits research on:
○ Safety and alignment

○ The model’s inner workings (i.e. representations)

○ Adaptation methods like LoRA, and continuous prompt-tuning

● Training data and filtering is not disclosed:
○ Limits scientific reproducibility

○ Potential benchmark contamination

○ People don’t know if their data is used, and there’s no way to remove it

Open & Responsible Research on LLMs

● Distributing the training data

○ Data licensing needs to permit this

● Allow people to inspect the collected data + opt-out

○ See The Stack

● Transparency builds trust in AI systems:

○ Be open about shortcomings in PII detection models

○ Be open about Code LLM limitations: Model cards

3. The Stack

The Stack

A dataset with 6.4TB of permissively licensed
source code in 358 programming languages with

a data inspection tool and opt-out mechanism

Data Collection

 Am I In The Stack?

https://huggingface.co/spaces/bigcode/in-the-stack

Opt-out

https://huggingface.co/spaces/bigcode/in-the-stack

Training Data - The Stack
● Strong near-deduplication

○ language agnostic and shows consistent performance gains

● Language selection
○ 86 languages out of 358

○ Includes GitHub issues, git commits, structured Jupyter notebooks

● Data quality inspection
○ inspect 100 samples per source and derive filtering heuristics

● Removing PII
○ StarPII: Model to detect/remove emails, password and keys

Architecture choices
What do people want from a code model?

● Fast inference
○ Integrated into an IDE - very low latency

● Cheap generations
○ Generating batches or long sequences requires lot of memory

● Long context
○ Including code from repo can improve performance

● Bi-directional context
○ Code before and after cursor can be important for completion

Architecture choices
What do people want from a code model?

● Fast inference
→ 15B parameters with code optimizations

● Cheap generations
→ Multi-Query Attention for reduced memory footprint

● Long context
→ Flash Attention to scale to 8,192 tokens context

● Bi-directional context
→ Fill-in-the-middle training objective

Architecture choices: MQA

LinearLinear

AttentionAttention Scaled dot-product attention

Linear LinearLinearLinear LinearLinearLinear

Q K V

Concat

Linear

Attention heads

Shared key, value
embeddings

First open-access model with MQA!

Training setup

Infrastructure: 512 GPUs

Model Distribution: TP=4, PP=4, DP=32

Batch size: 4M tokens
(or 512 at 8,192 sequence length)

Training length: 1T tokens / 250k steps

Training time: 24 days

Tool: Megatron-LM (w/ MQA + FlashAttn)
(https://github.com/bigcode-project/Megatron-LM) “smooth sailing”

StarCoderBase

Trained on 1T tokens in

80+ languages

StarCoder

Additionally trained on

35B Python tokens

Evaluation - HumanEval/MBPP

Common observed failure mode:
solution here

Prompt fix:
<filename>solutions/solutions_1.py

Here is the correct implementation of the code exercise

Didn’t observe similar gains for

CodeGen-Mono or StarCoderBase

Evaluation - MultiPL-E
MultiPL-E contains translated versions of HumanEval

- outperforming open-access models

- competitive with code-cushman-001

Evaluation - DS-1000

- benchmark with data science problems

- StarCoder / StarCoderBase competitive edge

- fine-tuning improves completion mode

VSCode extension
Auto-complete Membership test

https://marketplace.visualstudio.com/items?itemNa
me=HuggingFace.huggingface-vscode

Jupyter extension

https://github.com/bigcode-project/jupytercoder

● The markdown
context is passed to
the model as well as
cell outputs

● Leverages the
commit format of
starcoder to fix bugs
and errors

Thank you!

Questions?

hf.co/bigcodewww.bigcode-project.org

Feedback from the opt-out form
● “It should be opt-in instead of opt-out”
● “It is unfair to use my code without compensation”
● “There’s PII in my code and I don’t want it to be publicly exposed”
● “My code is of poor quality and unsuitable for training your AI model”
● “I am not confident about the current state of AI code generation. I

am concerned that the generated code could be traced back to
me and I’m held liable for issues in that code.”

Jennifer Ding’s community research: it’s both better
to know AND better to have a choice.

https://miro.com/app/board/uXjVMeuvLR8=/?share_link_id=159151239611

Training Data - Formatting

Code
<reponame>REPONAME<filename>FILENAME<gh_stars>STARS\nCode<eos>

Git commits
<commit_before>code<commit_msg>text<commit_after>code<eos>

Jupyter Notebooks
<jupyter_start><jupyter_text>TEXT<jupyter_code>CODE<jupyter_output>
OUTPUT<jupyter_text> ...

GitHub Issues
<issue_start>title + USERID: comment<issue_comment>USERID: Comment
... <issue_closed (optional)> <eos>

Evaluating Infilling
● StarCoder supports infilling or fill-in-the-middle: condition

generation on code before and after the insertion point
● One of a handful of recent open models that support infilling
● Applications

○ Docstring generation
○ Type prediction
○ Many more

● StarCoder outperforms other infilling models significantly on three
infilling tasks

Single-line code completion for three languages
(SantaCoder/InCoder benchmarks)

Python return-type prediction
(InCoder/TypeWriter benchmarks)

TypeScript type inference
(TypeWeaver benchmarks)

Perplexity with long contexts

● Derived test data from GPL repositories on GitHub. GPL was excluded from training
data.

● Demonstrates StarCoder can benefit from information within long files or
repositories.

● Longer contexts provides noticeable decreases in perplexity.

GSM8K

- StarcoderBase performs
better with PAL than with
CoT

- Outperforms
CodeGen-16B and
LLaMA-13B

MMLU
CoQA

Multiple-choice questions in
57 knowledge domains

Conversational question answering
on diverse text passages

● StarCoder models significantly outperform other open code LLMs but still fall short
of text-only LLMs like LLaMa

Harmful generations
StereoSet:
3 sentence completions (stereotypical, anti-stereotypical,
unrelated), which one did the model prefer?

RealToxicityPrompts:
Given toxic prompts (10k), how
much toxicity the model generates?

- StarCoder is less Stereotypical (overall) than
LLaMa and CodeGen

- With slightly lower Language Model Score
- On average (ICAT) StarCoder is better than

both LLaMa and CodeGen

- Classifier: percentage of
responses with toxic score > 0.5

- WordList: percentage of responses
with 1+ offensive word

- StarCoder generates less toxic
content than LLaMa, but little
more than CodeGen

Reasoning tasks in HELM
● StarCoderBase

substantially

outperforms other

open LLMs

● State-of-the-art

performance on

Dyck benchmark
🤔

Prompting StarCoder

Inspired by Anthropic’s HHH prompt: the TA prompt

can make the model act as a tech assistant!

excerpt from TA prompt

CodeML OpenRAIL-M v1

● Royalty free access and use of the model

● Enables downstream distribution of derivatives

● Includes ethical use restrictions based on technical capabilities

of the Model (e.g malware generation)

● Improved OpenRAIL license for commercialization

https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement

Chinchilla Scaling Laws

Parameters Tokens

[Hoffman et al]

Loss

https://arxiv.org/abs/2203.15556

Compute-optimal Parameters and Tokens

+ set the partial
derivative of L with
respect to N/D = 0

Compute vs model-size trade-off

with some math:

The compute vs model-size curve

Updated Chinchilla table Blogpost

https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Next steps

StarCoder+
- ⭐StarCoder+: StarCoder fine-tuned

on 600B tokens from the Falcon English
Web dataset & the Stack

- Strong natural language performance
and coding capabilities

- StarChat-Beta: StarCoder+
instruction-tuned

https://hf.co/bigcode/starcoderplus

StarChat Beta

https://huggingface.co/spaces/HuggingFaceH4/starchat-playground

