
SE4AI
Lessons Learned from Designing

SE Methods for Big Data and HW Heterogeneity

Miryung Kim

Professor and Vice Chair of Graduate Studies

 UCLA Computer Science
SEMLA June 9th 2023, Montreal, Canada

Software Engineering Analysis Lab at UCLA

Debugging and Testing
Tools for Big Data

Systems and Runtimes

Developer Tools for
Heterogeneous Computing

Code Mining, Debugging
and Refactoring for Java AI4SE

SE4AI
Software Engineering

for Enabling AI

AI for
Software Engineering

A new wave of
SE tools for data and
compute-intensive

Take-away: Context

There are huge challenges for making automated SE tractable

in the data-intensive and compute-intensive domain.

• the scale of large input

• long invocation latency

• performance overhead

• layers and layers

Take-away: Lessons Learned

Abstraction is useful for speed.

Injecting debuggability requires re-design.

Systems-level optimizations are necessary.

Domain-specialization is necessary and we cannot wait for a

large corpus to exist first.

Part 1.
SE Tools for

Big Data Analytics

Big Data Analytics Lifecycle

6

Run

3

• Design the application locally

• Test locally on a sample data

• Execute on the cloud, hoping that
it would work

• Several hours later, the job
crashes

Develop

1

Test

2
Repeat

Debug

4

Apache Spark 101

7

Map Map GroupByKey Map ReduceByKey

User Machine Distributed Cluster

Data Record

User Defined
Function
(UDF)

Dataflow
Operator

SC.textFile("s3://credit
history")
 .map{line =>
readPersonCredit(line)}

SC.textFile("s3://credithistoy")
 .map{line => readPersonCredit(line)}
 .map{p => ((p.ssn,p.cid) , p.sDate) }
 .groupByKey()
 .map{p => (p.ssn, MAX(p.value)-MIN(p.value))}
 .reduceByKey(_+_)

Apache Spark 101

8

Relational and dataflow operator

Custom logic as user-defined functions

String operations are common

Must model collections

Challenge: Complexity of Apache Spark

9

• Dataflow operators are built on 100Ks lines of framework’s code with complex
systems artifacts; therefore symbolically executing them is infeasible.

Internal implementation of JOIN

def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] =
 this.cogroup(other, partitioner).flatMapValues(
 pair =>
 for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w))
}
override def compute() = {
 val rddIterators = new ArrayBuffer[(Iterator[Product2[K, Any]], Int)]
 for ((dep, depNum) <- split.deps.zipWithIndex) dep match {
 case NarrowCoGroupSplitDep(rdd, _, itsSplit) => . . .

Higher-order function Query Optimizer

Data Partitioning

Concurrency Constructs

MPI

Challenge: Test Input Generation

10

• Use symbolic execution to automatically generate test data.

• Symbolic execution works best to produce unit tests for small code snippets.

Generate Test Data

Limitation

BigTest Approach [FSE 2019]

11

Inputs: Output: Big Data
Application

Synthetic Test
Data

SC.textFile("s3://credithistoy")
 .map{line => readPersonCredit(line)}
 .map{p => ((p.ssn,p.cid) , p.sDate) }
 .groupByKey()
 .map{p => (p.ssn, MAX(p.value)-MIN(p.value))}
 .reduceByKey(_+_)

Dataflow operators in first
order logic

Reduce:
∃tR,tL: cR ∈ CR ∧ cL ∈ CL ∧ cR(tR) ∧
tR,key = tL,key ∧cL(tL)
Map:
∃tR,tL: cR ∈ CR ∧ cL ∈
..

Symbolically
execute UDFs

Path Constraint:
PI.split(“,”).length >1 ⋀
AA.split(“,”)[0] = PI.split(“,”)[0] ⋀
AA.split(“,”)[3].isInteger ⋀ …
Effect:
AA.split(“,”)[0] + AA.split(“,”)[1] +
AA.split(“,”)[2]

Join dataflow operator logic
with the symbolic
representation of UDFs

1

2

3

Generate test data using
constraint solvers

4

BigTest Evaluation

34% 2X 105 to 108X
Code Coverage

Improvement

BigTest

improves JDU

path coverage

by 34% against

the entire

dataset.

Fault Detection

BigTest detects 2X

more faults than

Sedge because it

models the internal

semantics of UDFs

with the

specifications of

dataflow operators.

Test Data Size

Reduction

Compare to the

entire data set, Big

Test archives more

code coverage with

smaller data

194X
Speed Up

It reduces testing

time by 194X.

Part 2.
SE Tools for

Heterogeneous Computing

Hardware accelerators are widely available

Field programmable gate array (FPGA)

Programmable logics, interconnects, and customizable
building blocks

Catapult – Bing search with FPGA-enabled servers
50% throughput increase and 25% latency reduction.

Difficult to programs in RTL languages

int KNN()
 ...
// Calculate distance
 for (i = 0 to
number){
 dist[i] =
l2norm(data[i], dim);
 }
//Top 1 nearest
neighbor
 ...
}

Developer workflow with High Level Synthesis

1 Performance profiling

Kernel function
identification in C

Differential testing with
input samples (RTL
simulation vs. C execution)

2

3

4

Manual rewriting from C
to HLS-C

Iterative
optimization

5

HLS compilation to RTL
6 minutes

CPU-FPGA
co-simulation
8 minutes

FPGA synthesis in 2.5 hours

7X speed up on FPGA

Repeat

HLS tools are not easy to use for SW developers

C/C++ HLS-C
No developer tools for

code translation

Manual rewriting for
synthesizability and

optimization

● Resource finitization
● Hardware expertise and pragmas (directives) for optimization
● Partitioning, parallelization, pipelining, etc.

HLS-C requires specifying bitwidth for each type

float vecdot(
 float a[],
 float b[],
 int n) {
 for (int i = 0; i < n;
i++)
 sum += a[i] * b[i];

return sum;
}

float vecdot(
 float a[],
 float b[],
 fpga_int<7> n) {
 for (fpga_int<7> i = 0;
i < n; i++)
 sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

float vecdot(
 float a[],
 float b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i

< n; i++)
 sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

HLS-C uses a custom floating point type

fpga_float<8,15> vecdot(
 fpga_float<8,15> a[],
 fpga_float<8,15> b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i < n;

i++)
sum += a[i] * b[i];

return sum;
}

HLS-C requires finitizing resources

Node Node_arr[NODE_ARR_SIZE];
struct Node {

Node *left, *right;
int val; };

void delete_tree(Node_ptr root)
{...
 node_free(root); }
void traverse_converted(Node_ptr
curr) {

stack<context> s(STACK_SIZE);
while (!s.empty()) {

 ...}}

C Program HLS-C Program

struct Node {
Node *left, *right;
int val; };

void init(Node **root) {
*root = (Node

*)malloc(sizeof(Node)); }
void delete_tree(Node *root) {...
 free(root); }
void traverse(Node *curr) {

if (curr == NULL) return;
int ret = visit(curr->val);
traverse(curr->left);
traverse(curr->right);

}

HLS compile
error

int accumulate(int data[size]){
 typedef ap_uint<8> bit8;
 #define max M;
 bit8 sum = 0;
 bit8 data_fpga[M];
 for(i = 0 to M){
 data_fpga[i]=(bit8)data[i];
 }
 SUM_LOOP for(i = 0 to M){
 #pragma HLS unroll factor=2
 sum += data_fpga[i];
 }
 return sum;
}

int main(int argc, char
*argv[]){
int data[] =
 gradient(argv[1]);
 int sum;
 float th = argv[2];
 int size = data.size();
 accumulate(data[size]);
 for(i = 0 to size){
 data[i] /= sum;
 if(data[i] > th)
 discard;
 }
}

Host Code Kernel Code

Divergence errors between CPU and FPGA

Input CPU FPGA

[1,1,1,253] no errors div/0
in host

[2,1,1,253] 257 1

AFL running time for finding errors

AFL: American Fuzzy Lop (a well known fuzz testing framework)

Ex
ec

u
te

Challenge 1: lack of guidance in HW

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Branch coverage is not meaningful in HW

Challenge 2: lack of effective mutations

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Input mutations must stretch HW behavior in terms of finitized
resource usages to induce errors

Ex
ec

u
te

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Fuzzing assumes the program under test can execute quickly in
the order of milliseconds.

Ex
ec

u
te

Challenge 3: long simulation time

HeteroFuzz Approach (FSE 2021)

Challenge

lack of guidance in HW

lack of effective mutations

Accelerator Spectra Monitoring

Heterogeneous
Applications

Probabilistic Mutation

Selective HLS Invocationlong simulation time

Accelerator spectra monitoring
int accumulate(int data[size]){
 typedef ap_uint<8> bit8;
 #define max M;
 bit8 sum = 0;
 bit8 data_fpga[M];
 for(i = 0 to M){
 data_fpga[i]=(bit8)data[i];
 }
 SUM_LOOP for(i = 0 to M){
 #pragma HLS unroll factor=2
 sum += data_fpga[i];
 }
 return sum;
}

int main(int argc, char
*argv[]){
int data[] =
 gradient(argv[1]);
 int sum;
 float th = argv[2];
 int size = data.size();
 accumulate(data[size]);
 for(i = 0 to size){
 data[i] /= sum;
 if(data[i] > th)
 discard;
 }
} Host CodeKernel Code

Fuzzing Guidance
Kernel input: [1,1,1,9]

Accelerator Feedback

 Data_fpga: [1,9]

 Sum: [2,12]

 Accessed offsets: [0,1,2,3]

 loop iterations: 2

Host Feedback

 The activated branches

Inject accelerator
specific monitors

Static analysis of
HLS pragmas

HeteroFuzz evaluation

754X 57% 8.8X
Speed up

with

three-pronged

optimizations in

finding

divergence

errors

Efficiency

with selective

HLS invocation

17.5X
Speed up

with dynamic

probabilistic

 mutation

Effectiveness

divergence-ind

ucing inputs

with

accelerator

spectra

monitoring

What lessons have we learned by adapting
SE methods to the data-intensive and

compute-intensive domain?

Project Key Idea

BigTest: Symbolic Execution [FSE 2019] Abstraction to tame complexity: combining UDF symbolic
execution with dataflow and relational operator semantics

BigFuzz: Fuzz Testing [ASE 2020] Abstraction to increase speed: source-level API rewriting for
dataflow and relational APIs

BigDebug: Interactive Debugger
[ICSE 2016]

Rewriting runtime to add inspection visibility into opaque and
complex data processing without much overhead

PerfDebug: Performance Latency
Debugging [SoCC 2019]

Rewriting runtime to add inspection capability for fine-grained
latency tracking

Titian: Data Provenance [VLDB 2015] Distributed, optimized backward join via partition-id tracking

BigSift: Delta Debugging [SoCC 2017] Systems-level optimizations for memoizing similar executions and
reducing the scope of inputs to re-execute

FlowDebug: Taint Analysis using
Influence Function [SoCC 2020]

Winnowing out answers for large-scale aggregation operators

OptDebug: Spectra-based Debugging/
Operation Tainting [SoCC 2021]

Winnowing out answers via operation-level tainting

Lesson 1: Abstraction is useful for increasing speed.

Project Key Idea

BigFuzz: Fuzz Testing [ASE 2020] Abstraction to increase speed: source-level API rewriting
for dataflow and relational APIs

BigTest: Symbolic Execution [FSE
2019]

Abstraction to tame complexity: combining UDF symbolic
execution with dataflow and relational operator semantics

Broken assumptions
● A program runs fast to allow fuzzing.
● Code is too big for symbolic execution.

Lesson 2: Injecting debuggability and traceability requires
re-design.

Project Key Idea

BigDebug: Interactive Debugging
[ICSE 2016]

Rewriting runtime to add inspection visibility into opaque
and complex data processing without much overhead

PerfDebug: Performance Latency
Debugging [SoCC 2019]

Rewriting runtime to add inspection capability for
fine-grained latency tracking

Broken assumptions
● Injecting traceability into runtimes adds intolerable

overhead. Replay debugging is too slow.

Lesson 3: Systems-level optimizations are necessary

Project Key Idea

Titian: Data Provenance [VLDB 2015] Distributed, optimized backward join via partition-id
tracking

BigSift: Delta Debugging [SoCC 2017] Systems-level optimizations for memoizing similar
executions and pushing oracle evaluation to earlier
computation stages

Map Map Group Map Reduce

In Tag Out Tag

In Tag Out TagIn Tag Out Tag

Worker 2

Worker 1

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

JoinJoin

Lesson 4: Domain-specialization is necessary, yet no large
corpus exists for a new domain.

Project Key Idea

HeteroRefactor [ICSE 2020] Optimization of bitwidths and FP precision: accuracy and
performance tradeoffs

HeteroFuzz [FSE 2021] Test input generation that accounts for HW accelerator
behavior

HeteroGen [ASPLOS 2022] Automated program repair for HLS rewriting

Broken assumptions
● A program runs fast to allow fuzzing.
● A compiler runs fast to allow iterative program repairs.
● Many examples exist to allow code pattern mining.

What challenges and opportunities
exist in this data and

compute-intensive domain?

Future Work: Challenges and Opportunities

Challenges Slow Program Execution

Opportunities HW acceleration for test generation
• invocation
• mutation
• in-kernel probes

From targeting heterogeneity to
leveraging heterogeneity

Future Work: Challenges and Opportunities

Challenges Layers and Extensions

Opportunities Test generation for multi-layer
compiler extension

Isolating an infection chain
across multi layer

Targeting a system of systems
not a standalone system

Future Work: Challenges and Opportunities
Challenges Domain specialization

in the absence of a large corpus

Corpus statistics for Incoder
[ICLR 2023]

Future Work: Challenges and Opportunities
Challenges Domain specialization

in the absence of a large corpus

Opportunities Human-in-the-loop synthesis
• custom mutation
• custom feedback

• custom repair exploration
• custom fitness function
• custom code patterns

Active incorporation of human feedback, while
reducing inspection effort

Fuzzing

Repair

Search

Summary

In the era of AI, we must re-imagine SE methods to

account for the importance of big data and increasing

hardware heterogeneity.

There are huge challenges for making automated SE

tractable in the data-intensive and compute-intensive

domain: the scale of large input, long invocation

latency, performance overhead, and layers and layers.

Thank you!

SERVICE
S

Thanks to Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar,
Jason Lau, Aishwarya Sivaraman, Jason Cong, Harry Xu, Hongbo
Rong, Rohan Padhye, Jason Teoh, Fabrice Harel-Canada, Yifan
Qiao, Haoran Ma

https://github.com/ucla-seal/

Debugging and Testing
Tools for Big Data

Developer Tools for
Heterogeneous Computing

HeteroGen: Automated Transpilation and Repair from C to HLS-C (ASPLOS
2022)
HeteroFuzz: Test Input Generation for Differential Testing CPU vs. FPGA
(FSE 2021)
HeteroRefactor: Refactoring for Heterogeneous Applications with FPGA
(ICSE 2020)
QDiff: Automated Testing of Quantum Software Stacks (ASE 2021)

BigTest: Symbolic-Execution based Test Input Generation,
(FSE 2019)
BigFuzz: Fuzz Testing, ASE 2020
BigDebug: Interactive Debugger (ICSE 2016)
BigSift: Automated Delta Debugging (SoCC 2017)
PerfDebug: Performance Debugging (SoCC 2019)
FlowDebug: Dynamic Taint Analysis with Influence
Function (SoCC 2020)
OptDebug: Operational-Level Taint Analysis Spectra
Debugging SoCC 2021
Titian: Data Provenance, VLDB 2016

