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Take-away: Context 

There are huge challenges for making automated SE tractable 

in the data-intensive and compute-intensive domain. 

• the scale of large input

• long invocation latency

• performance overhead

• layers and layers



Take-away: Lessons Learned

Abstraction is useful for speed. 

Injecting debuggability requires re-design. 

Systems-level optimizations are necessary. 

Domain-specialization is necessary and we cannot wait for a 

large corpus to exist first. 



Part 1. 
SE Tools for 

Big Data Analytics



Big Data Analytics Lifecycle

6

Run

3

• Design the application locally

• Test locally on a sample data

• Execute on the cloud, hoping that 
it would work

• Several hours later, the job 
crashes

Develop 

1

Test

2
Repeat

Debug 

4



Apache Spark 101
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Map Map GroupByKey Map ReduceByKey

User Machine Distributed Cluster

Data Record

User Defined 
Function 
(UDF)

Dataflow 
Operator

SC.textFile("s3://credit
history") 
  .map{line => 
readPersonCredit(line)} 



SC.textFile("s3://credithistoy") 
  .map{line => readPersonCredit(line)} 
  .map{p => ( (p.ssn,p.cid) , p.sDate ) }   
  .groupByKey() 
  .map{p => (p.ssn, MAX(p.value)-MIN(p.value) )}
  .reduceByKey(_+_)

Apache Spark 101
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Relational and dataflow operator

Custom logic as user-defined functions

String operations are common

Must model collections



Challenge: Complexity of Apache Spark
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• Dataflow operators are built on 100Ks lines of framework’s code with complex 
systems artifacts; therefore symbolically executing them is infeasible.

Internal implementation of JOIN

def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] =   
  this.cogroup(other, partitioner).flatMapValues( 
     pair => 
         for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w) )
} 
override def compute() = { 
  val rddIterators = new ArrayBuffer[(Iterator[Product2[K, Any]], Int)] 
  for ((dep, depNum) <- split.deps.zipWithIndex) dep match { 
    case NarrowCoGroupSplitDep(rdd, _, itsSplit) => . . .

Higher-order function Query Optimizer

Data Partitioning

Concurrency Constructs

MPI



Challenge: Test Input Generation
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• Use symbolic execution to automatically generate test data.

• Symbolic execution works best to produce unit tests for small code snippets.

Generate Test Data

Limitation



BigTest Approach [FSE 2019]
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Inputs:                    Output: Big Data 
Application

Synthetic Test 
Data 

 

SC.textFile("s3://credithistoy") 
  .map{line => readPersonCredit(line)} 
  .map{p => ( (p.ssn,p.cid) , p.sDate ) }   
  .groupByKey() 
  .map{p => (p.ssn, MAX(p.value)-MIN(p.value) )}
  .reduceByKey(_+_)

Dataflow operators in first 
order logic

Reduce: 
∃tR,tL: cR ∈ CR ∧ cL ∈ CL ∧ cR(tR) ∧  
tR,key = tL,key ∧cL(tL)
Map:
∃tR,tL: cR ∈ CR ∧ cL ∈
.. 

Symbolically 
execute UDFs

Path Constraint: 
PI.split(“,”).length >1 ⋀ 
AA.split(“,”)[0] = PI.split(“,”)[0] ⋀ 
AA.split(“,”)[3].isInteger ⋀ … 
Effect:
AA.split(“,”)[0] + AA.split(“,”)[1] + 
AA.split(“,”)[2]

Join dataflow operator logic 
with the symbolic 
representation of UDFs

1

2

3

Generate test data using 
constraint solvers
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BigTest Evaluation

34% 2X 105 to 108X
Code Coverage 

Improvement

BigTest 

improves JDU 

path coverage 

by 34% against 

the entire 

dataset.

Fault Detection  

BigTest detects 2X 

more faults than 

Sedge because it 

models the internal 

semantics of UDFs 

with the 

specifications of 

dataflow operators.

Test Data Size 

Reduction

Compare to the 

entire data set, Big 

Test archives more 

code coverage with 

smaller data

194X
Speed Up

It reduces testing 

time by 194X.



Part 2. 
SE Tools for 

Heterogeneous Computing



Hardware accelerators are widely available



Field programmable gate array (FPGA)

Programmable logics, interconnects, and customizable 
building blocks

Catapult – Bing search with FPGA-enabled servers
50% throughput increase and 25% latency reduction.  

Difficult to programs in RTL languages  



int KNN()
 ...
// Calculate distance
  for (i = 0 to 
number){
  dist[i] = 
l2norm(data[i], dim);
  }
//Top 1 nearest 
neighbor
   ...
}

Developer workflow with High Level Synthesis

1 Performance profiling

Kernel function 
identification in C

Differential testing with 
input samples (RTL 
simulation vs. C execution)

2

3

4

Manual rewriting from C 
to HLS-C

Iterative
optimization

5

HLS compilation to RTL
6 minutes

CPU-FPGA 
co-simulation 
8 minutes 

FPGA synthesis in 2.5 hours 

7X speed up on FPGA

Repeat



HLS tools are not easy to use for SW developers

C/C++ HLS-C
No developer tools for 

code translation

Manual rewriting for 
synthesizability and 

optimization

● Resource finitization
● Hardware expertise and pragmas (directives) for optimization
● Partitioning, parallelization, pipelining, etc. 



HLS-C requires specifying bitwidth for each type   

float vecdot(
    float a[],
    float b[],
    int n) {
    for (int i = 0; i < n; 
i++)
        sum += a[i] * b[i];

return sum;
}

float vecdot(
    float a[],
    float b[],
    fpga_int<7> n) {
    for (fpga_int<7> i = 0; 
i < n; i++)
        sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program



float vecdot(
    float a[],
    float b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i 

< n; i++)
        sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

HLS-C uses a custom floating point type

fpga_float<8,15> vecdot(
    fpga_float<8,15> a[],
    fpga_float<8,15> b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i < n; 

i++)
sum += a[i] * b[i];

return sum;
}



HLS-C requires finitizing resources

Node Node_arr[NODE_ARR_SIZE];
struct Node {

Node *left, *right;
int val; }; 

void delete_tree(Node_ptr root) 
{...
    node_free(root); }
void traverse_converted(Node_ptr 
curr) {

stack<context> s(STACK_SIZE);
while (!s.empty()) {

      ...}}

C Program HLS-C Program

struct Node {
Node *left, *right;
int val; };

void init(Node **root) {
*root = (Node 

*)malloc(sizeof(Node)); }
void delete_tree(Node *root) {...
    free(root); }
void traverse(Node *curr) {

if (curr == NULL) return;
int ret = visit(curr->val);
traverse(curr->left);
traverse(curr->right);

}

HLS compile 
error 



int accumulate(int data[size]){
  typedef ap_uint<8> bit8;
  #define max M;
  bit8 sum = 0;
  bit8 data_fpga[M];
  for(i = 0 to M){
    data_fpga[i]=(bit8)data[i];
  }
  SUM_LOOP for(i = 0 to M){
    #pragma HLS unroll factor=2
    sum += data_fpga[i];
  }
  return sum;
}

int main(int argc, char
*argv[]){
int data[] =
  gradient(argv[1]);
  int sum;
  float th = argv[2];
  int size = data.size();
  accumulate(data[size]);
  for(i = 0 to size){
    data[i] /= sum;
    if(data[i] > th)     
       discard;
  }
}

Host Code Kernel Code

Divergence errors between CPU and FPGA

Input CPU FPGA

[1,1,1,253] no errors div/0 
in host

[2,1,1,253] 257 1



AFL running time for finding errors

AFL: American Fuzzy Lop (a well known fuzz testing framework)



Ex
ec

u
te

Challenge 1: lack of guidance in HW

Input Input Input’

ProgramNew Branch 
Coverage?

Pick Mutate

FeedbackYes

No

Add 
Input’

Branch coverage is not meaningful in HW



Challenge 2: lack of effective mutations

Input Input Input’

ProgramNew Branch 
Coverage?

Pick Mutate

FeedbackYes

No

Add 
Input’

Input mutations must stretch HW behavior in terms of finitized 
resource usages to induce errors

Ex
ec

u
te



Input Input Input’

ProgramNew Branch 
Coverage?

Pick Mutate

FeedbackYes

No

Add 
Input’

Fuzzing assumes the program under test can execute quickly in 
the order of milliseconds.

Ex
ec

u
te

Challenge 3: long simulation time



HeteroFuzz Approach (FSE 2021)

Challenge

lack of guidance in HW

lack of effective mutations

Accelerator Spectra Monitoring

Heterogeneous 
Applications

Probabilistic Mutation

Selective HLS Invocationlong simulation time



Accelerator spectra monitoring
int accumulate(int data[size]){
  typedef ap_uint<8> bit8;
  #define max M;
  bit8 sum = 0;
  bit8 data_fpga[M];
  for(i = 0 to M){
    data_fpga[i]=(bit8)data[i];
  }
  SUM_LOOP for(i = 0 to M){
    #pragma HLS unroll factor=2
    sum += data_fpga[i];
  }
  return sum;
}

int main(int argc, char
*argv[]){
int data[] =
  gradient(argv[1]);
  int sum;
  float th = argv[2];
  int size = data.size();
  accumulate(data[size]);
  for(i = 0 to size){
    data[i] /= sum;
    if(data[i] > th)     
       discard;
  }
} Host CodeKernel Code

Fuzzing Guidance
Kernel input: [1,1,1,9]

Accelerator Feedback

  Data_fpga: [1,9]

  Sum: [2,12]

  Accessed offsets: [0,1,2,3]

  loop iterations: 2 

Host Feedback

  The activated branches

Inject accelerator 
specific monitors

Static analysis of 
HLS pragmas



HeteroFuzz evaluation

754X 57% 8.8X
Speed up 

with 

three-pronged 

optimizations in 

finding 

divergence 

errors

Efficiency 

with selective 

HLS invocation

17.5X
Speed up 

with dynamic 

probabilistic 

 mutation

Effectiveness 

divergence-ind

ucing inputs 

with 

accelerator 

spectra 

monitoring



What lessons have we learned by adapting 
SE methods to the data-intensive and 

compute-intensive domain?



Project Key Idea

BigTest: Symbolic Execution [FSE 2019] Abstraction to tame complexity: combining UDF symbolic 
execution with dataflow and relational operator semantics 

BigFuzz: Fuzz Testing [ASE 2020] Abstraction to increase speed: source-level API rewriting for 
dataflow and relational APIs

BigDebug: Interactive Debugger 
[ICSE 2016] 

Rewriting runtime to add inspection visibility into opaque and 
complex data processing without much overhead

PerfDebug: Performance Latency 
Debugging [SoCC 2019]

Rewriting runtime to add inspection capability for fine-grained 
latency tracking

Titian: Data Provenance [VLDB 2015] Distributed, optimized backward join via partition-id tracking 

BigSift: Delta Debugging [SoCC 2017] Systems-level optimizations for memoizing similar executions and 
reducing the scope of inputs to re-execute 

FlowDebug: Taint Analysis using 
Influence Function [SoCC 2020]

Winnowing out answers for large-scale aggregation operators  

OptDebug: Spectra-based Debugging/ 
Operation Tainting [SoCC 2021]

Winnowing out answers via operation-level tainting



Lesson 1: Abstraction is useful for increasing speed. 

Project Key Idea

BigFuzz: Fuzz Testing [ASE 2020] Abstraction to increase speed: source-level API rewriting 
for dataflow and relational APIs

BigTest: Symbolic Execution [FSE 
2019]

Abstraction to tame complexity: combining UDF symbolic 
execution with dataflow and relational operator semantics 

Broken assumptions
● A program runs fast to allow fuzzing. 
● Code is too big for symbolic execution. 



Lesson 2: Injecting debuggability and traceability requires 
re-design.  

Project Key Idea

BigDebug: Interactive Debugging 
[ICSE 2016] 

Rewriting runtime to add inspection visibility into opaque 
and complex data processing without much overhead

PerfDebug: Performance Latency 
Debugging [SoCC 2019]

Rewriting runtime to add inspection capability for 
fine-grained latency tracking

Broken assumptions
● Injecting traceability into runtimes adds intolerable 

overhead. Replay debugging is too slow. 



Lesson 3: Systems-level optimizations are necessary

Project Key Idea

Titian: Data Provenance [VLDB 2015] Distributed, optimized backward join via partition-id 
tracking 

BigSift: Delta Debugging [SoCC 2017] Systems-level optimizations for memoizing similar 
executions and pushing oracle evaluation to earlier 
computation stages

Map Map Group Map Reduce

In Tag Out Tag

In Tag Out TagIn Tag Out Tag

Worker 2

Worker 1

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

In Tag Out Tag

JoinJoin



Lesson 4: Domain-specialization is necessary, yet no large 
corpus exists for a new domain.

Project Key Idea

HeteroRefactor [ICSE 2020] Optimization of bitwidths and FP precision: accuracy and 
performance tradeoffs    

HeteroFuzz [FSE 2021] Test input generation that accounts for HW accelerator 
behavior 

HeteroGen [ASPLOS 2022] Automated program repair for HLS rewriting  

Broken assumptions
● A program runs fast to allow fuzzing. 
● A compiler runs fast to allow iterative program repairs.
● Many examples exist to allow code pattern mining. 



What challenges and opportunities 
exist in this data and 

compute-intensive domain?



Future Work: Challenges and Opportunities

Challenges Slow Program Execution 

Opportunities HW acceleration for test generation 
• invocation 
• mutation
• in-kernel probes

From targeting heterogeneity to 
leveraging heterogeneity



Future Work: Challenges and Opportunities

Challenges Layers and Extensions

Opportunities Test generation for multi-layer
compiler extension

Isolating an infection chain 
across multi layer 

Targeting a system of systems 
not a standalone system



Future Work: Challenges and Opportunities
Challenges Domain specialization 

in the absence of a large corpus

Corpus statistics for Incoder 
[ICLR 2023] 



Future Work: Challenges and Opportunities
Challenges Domain specialization 

in the absence of a large corpus

Opportunities Human-in-the-loop synthesis
• custom mutation 
• custom feedback

• custom repair exploration 
• custom fitness function
• custom code patterns

Active incorporation of human feedback, while  
reducing inspection effort

Fuzzing

Repair

Search



Summary

In the era of AI, we must re-imagine SE methods to 

account for the importance of big data and increasing 

hardware heterogeneity. 

There are huge challenges for making automated SE 

tractable in the data-intensive and compute-intensive 

domain: the scale of large input, long invocation 

latency, performance overhead, and layers and layers. 



Thank you!

SERVICE
S

Thanks to Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, 
Jason Lau, Aishwarya Sivaraman, Jason Cong, Harry Xu, Hongbo 
Rong, Rohan Padhye, Jason Teoh, Fabrice Harel-Canada, Yifan 
Qiao, Haoran Ma



https://github.com/ucla-seal/

Debugging and Testing  
Tools for Big Data 

Developer Tools for 
Heterogeneous Computing

HeteroGen: Automated Transpilation and Repair from C to HLS-C (ASPLOS 
2022)
HeteroFuzz: Test Input Generation for Differential Testing CPU vs. FPGA 
(FSE 2021)
HeteroRefactor: Refactoring for Heterogeneous Applications with FPGA 
(ICSE 2020)
QDiff: Automated Testing of Quantum Software Stacks (ASE 2021)

BigTest: Symbolic-Execution based Test Input Generation, 
(FSE 2019)
BigFuzz: Fuzz Testing, ASE 2020 
BigDebug: Interactive Debugger (ICSE 2016)
BigSift: Automated Delta Debugging (SoCC 2017)
PerfDebug: Performance Debugging (SoCC 2019)
FlowDebug: Dynamic Taint Analysis with Influence 
Function (SoCC 2020)
OptDebug: Operational-Level Taint Analysis Spectra 
Debugging SoCC 2021 
Titian: Data Provenance, VLDB 2016


