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Why do we need transparency ?
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Achieving transparency

Transparency by design

1. Prior Arrests = 2 Tpomt

2. Prior Arrests > 5 1 point | +
3 Local Ordinance 1 point | +
4. Age at Release between 18 to 24 1 point | +
5. Age at Release > 40 -1 point | +

ADD POINTS FROM ROWS 1-5 SCORE

SCORE | -1 | 0 [ 1 [ 2 [ 3 [ a
RISK | 119% | 265% | 50.0% | 73.1% | 88.1% | 953%

priors>3

age<26 Yes

No priors:2-3

juvenile-crimes=0 Yes

RS
Yes No

f(x;0) =b+wizy + - +wprp =b+w'x

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no
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A Survey of Methods for Explaining Black Box Models

RICCARDO GUIDOTTI, ANNA MONREALE, SALVATORE RUGGIERI, and
FRANCO TURINI, KDDLab, University of Pisa, Italy

FOSCA GIANNOTTI, KDDLab, ISTI-CNR, Italy

DINO PEDRESCH]I, KDDLab, University of Pisa, Italy

In recent years, many accurate decision support systems have been constructed as black boxes, that is as
systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an
ethical issue. The literature reports many approaches aimed at ov ing this crucial weakness, sometimes
at the cost of sacrificing accuracy for interpretability. The applications in which black box decision systems
can be used are various, and each approach is typically developed to provide a solution for a specific problem
and, as a consequence, it explicitly or implicitly delineates its own definition of interpretability and expl
tion. The aim of this article is to provide a classification of the main probl dd d in the lit with
respect to the notion of explanation and the type of black box system. Given a problem definition, a black
box type, and a desired explanation, this survey should help the researcher to find the proposals more useful
for his own work. The proposed classification of approaches to open black box models should also be useful
for putting the many research open questions in perspective.

(ACM Computing Surveys. 2018)

“’ Model (global) explanation techniques

"‘"" Outcome (local) explanation techniques

Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
Opportunities and Challenges toward Responsible Al

Alejandro Barredo Arrieta®, Natalia Dfaz-Rodriguez®, Javier Del Ser, Adrien Bennetot™,
Siham Tabik?, Alberto Barbado®, Salvador Garcia¥, Sergio Gil-Lopez*, Daniel Molina¥,
Richard Benjamins®, Raja Chatila’, and Francisco Herrera®
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Abstract

In the last few years, Antificial Intelligence (Al) has achieved a notable that, if h d
appropriately, may deliver the best of expectations over many application sectors across the field. For this

1o occur shortly in Machine Leaming, the entire community stands in front of the barrier of explainability,

an inherent problem of the latest iques brought by sub- lism (e.g. or Deep Neural

Networks) that were not present in the last hype of Al (namely, expert systems and rule based models).

Paradigms underlying this problem fall within the so-called eXplainable Al (XAI) field, which is widely
acknowledged as a crucial l'ulure for the prlcucal deployment of Al models. The overview presented in
this article ines the existing ibutions already done in the field of XAl including a

(arXiv:1910.10045v1. 2019)
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XAl Challenges
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Trust challenges



Manipulation risks

Fooling auditors and end-users



Fairwashing

Dishonest ML models' producers could leverage on

-4,[
' Learning algorithm
— o
l “— Black-box model
Training data
Given the false perception PO
A
that a ML model l P
complies with a given LaundryML —8
ethical value s | . o) _
\ ; VL Explanation algorithm J >
'

Labeled data AN @

Interpretable model




Fairwashing: the risk of rationalization

Ulrich Aivodjit, Hiromi Arai%3, Olivier Fortineau?, Sébastien Gambs?, Satoshi Hara>, Alain Tapp®’

Social demands on ethically aligned Al

IEEE ethically
aligned design

Respect Human Rights
- ”Right to an explanation”

- "Right to fairness and transparency”
Explanation and Fairness are required for ML.

Faking as if ML model is ethically aligned.

This Study
- Raise the awareness on the risk of fairwashing.

- Show that an unfair model can be rationalized
by generating fake explanations.

e

2 api ]
Scoring service ~ ¢
- Explanation H
= APl

LaundryML

Systematically generating fake explanations - Unfair decisions can be rationalized.
LaundryML Two building blocks:

[Stepl] Generate many explanation by model enumeration. 1. CORELS [Angelino+, KDD’17]
[Step2] Pick up one that is useful for “fairwashing”. fibractieanioe alzarthmioneied it

* Enumeration of CORELS
Enumerate models w/ small misclassification and unfairness.
obj(-) = (1 — B)misc(-) + Bunfairness(-) + AK

2. Model Enumeration [Hara+,AAAI'17,18]

* Enumerate models in ascending order
of the training errors.

Unfairness (demographic parity)

A bias in the model’s decision.

Fidelity / Misclassification

Similarity/Dissimilarity between the base model b
and the explanation c.

fidelity(c) = % 3 I(e(z) = b(=)), misc(c) = 1 — fidelity(c)

rzeX

unfairness(c)
=|P(@=1s=1) - P(§=1|s =0)|

Variants of LaundryML

LaundryML-global (Model rationalization) LaundryML-locoal (Outcome rationalization)

* Rationalize decisions on the group (the suing group) * Rationalize individual decisions.
* Generate a single fake explanation. * Generate fake explanations for each individual.

Black-box model 4 Black-box model
y " 4 reason A
- “ - ... of the “
' reason B '
... of the
reason C

Your applications are
rejected because ...

rejected because ...

Your application is
Suing group

PRestn

xmxs  ENSTA

1) Universite du Québec a 4) ENSTA ParisTech
Montréal 5) Osaka University

2) RIKEN AIP 6) Université de Montréal

3)JST PRESTO 7) MILA

Datasets
Adult Income (s: gender) / ProPublica Recidivism dataset (s : race)

I5) three subsets: the training set, the suing group, the test set

Classifier Random Forest

Model rationalization by LaundryML-global

Fidelity and unfairness of rationalized explanations on the suing group

Adult Income Adult Income [
2=0.005 2=0.01 | 2=0.005 2=0.01 B-unfairness
- . - — trade-off
0.9 oo St 3 am it ,‘*4‘5 ;T'J."‘ ® o
Zos il A I ) Fidelity — Unfairness
k=] | o2 .
e ' NEPPIN tradeoffs in enumerated
- X o7 =
o ; ol explanations
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Unfairness

Evaluation by FairML

Obtained relative feature dependence ranking (Adult)

* An obtained fake explanation successfully rationalized the unfair decisions.
an honest explanation
o —

a fake explanation QELCYSCIEELle])]
i —

If capital gain > 7056
then high-income

else if marital = single
then low-income

else if education = HS-grad
then low-income

else if occupation = other
then low-income

else if occupation = white-colloar
then high-income

°
2
8

else low-income

w s o s 1w gender S

Outcome rationalization by LaundryML-local

Empirical CDF of the unfairness of the best model

Adult Propublica Recidivism Individual decisions were
g 1.009 B-unfairness . 2

" 7‘ trade-off successfully rationalized.

g 0 ——‘.“ black-box

s o] . For ProPublica, explanations for

§ 3 p=0.5 each individual were at least
| W : o

&’ 0251 ol twice less unfair than the black-
ol box model.

Unfaimess ‘ ‘ lenlairr;ess .
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Characterizing the risk of
fairwashing

Ulrich Aivodiji
Hiromi Arai
Sébastien Gambs
Satoshi Hara

Introduction

e Post-hoc explanations are vulnerable to manipulations
e Can we detect these manipulation ?
e We focus on fairwashing.

Learning algorithm J

Black-box model

(0

Training data

(©

Explanation algorithm

Labeled data
Interpretable model
- Given a black-box model b, under-report the unfairness of b,
using high-fidelity explainers e.
minimize E, p))~p.,[/(€(x:). b(x))]. subject to unfp,(e) <€
*[(e(x), b(x)): loss function
*Dsg = {Xsg, b(Xsqg) }: suing group
*unfp,(-): unfairness
* e: value of the unfairness constraint.
- Fidelity is defined as label agreement between b and e

fidelity(€) = |)1<—|Z]I(e(x) — b(x)).

Methods

e Evaluate the detectability of fairwashing attacks through the in-
consistencies introduced by dataset update or model update on
their performances (i.e., fidelity of the fairwashed explainer).

- Generalization of fairwashing attacks beyond suing groups.
- Transferability of fairwashing attacks across black-box models.

- Fairwashing attacks have high manipulability (i.e.,

given an unfair black-box model, it is easy to find
high-fidelity explainers with significantly lower un-
fairness). They can generalize beyond explanation

instances and transfer across black-box models.

- Fairwashing attacks are significantly less expensive
to perform than previously thought. Detecting fair-
washing based on the change of fidelity alone is not

a viable solution (or at least it is very difficult)

- There is a hope: computing the range of the un-
fairness of high-fidelity explainers can help in quan-

tifying the risk of fairwashing.

Take a picture to
download the full paper

e Quantify the risk of fairwashing by evaluating the range of the
unfairness of high-fidelity explainers, using the Fairness In The
Rashomon Set (Coston et al., 2021) framework:

minimize unfp,(e), subject to E p(x))~p.,[/(e(x:). b(x))] < v

Experiments
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Figure 1: Generalization of fairwashing attacks. Adult Income

(Left), COMPAS (Right).
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Figure 2: Transferability of fairwashing attacks. Adult Income

(Left), COMPAS (Right).

Adult Income —— DNN

0.9070.9150.923 0.93 0.9350.939.0.942 0,946 0.948 0.95
Fidelity

s 2

Unfairness
|

Unfairness

Figure 3: Quantifying fairwashing.
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P Post-hoc explanations techniques can be used to under-report the
discrimination level of black-box models that they explain

Ke y Both global and local explanations techniques can be used to achieve

takeaways

— It seems almost impossible to detect when fairwashing is performed

.o
Ny,

a
?@4 Don’t let yourself be fooled by post-hoc explanation techniques

13



More info

Fairwashing: the risk of rationalization
Ulrich Aivodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, Alain Tapp. (ICML, 2019)

Characterizing the risk of fairwashing
Ulrich Aivodji, Hiromi Arai, Sébastien Gambs, Satoshi Hara. (NeurIPS, 2021)

Washing The Unwashable: On The (Im)possibility of Fairwashing Detection
Ali Shahin Shamsabadi, Mohammad Yaghini, Natalie Dullerud, Sierra Wyllie, Ulrich Aivodji, Aisha Alaagib Alryeh Mkean, Sébastien Gambs, Nicolas Papernot. (NeurIPS, 2022)

Adversarial XAl: https://github.com/hbaniecki/adversarial-explainable-ai
by Hubert Baniecki

14


https://github.com/hbaniecki/adversarial-explainable-ai

Countermeasures

* Quantify the risk by analyzing the Rashomon set (set of good models)
* Range of unfairness (or other useful properties)

* Pros
* Help in assessing the manipulability of explanations

* Cons
 Computational overhead
 Some promising directions

Computing the Collection of Good Models for Rule Lists (Mata, Kanamori, Arimura, 2022)

Predictive Multiplicity in Classification (Marx, Calmon, Ustun, 2021)
Characterizing Fairness Over the Set of Good Models Under Selective Labels (Coston, Rambachan, Chouldechova, 2021)

Partial order: Finding Consensus among Uncertain Feature Attributions (Laberge, Pequignot, Khomh, Marchand, Mathieu, 2021)

15



Subgroup performance
disparities



Implication of subgroup performance

disparities

=

Actual Model

e Time of diagnosis

e Hospital name
e Zip code
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Right Explanation

e Time of diagnosis
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\o Blood Pressure
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In this work

Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations.
Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach, Hima Lakkaraju. (AIES, 2022)

Evaluation framework to quantitatively measure group-based disparities in the quality of explanations output
by state-of-the-art local explanation methods

18



Overview

Explanation techniques
* LIME

 SHAP

* MAPLE

* SmoothGrad
* IntGrad

* VanGrad

Performance metrics
e Ground truth fidelity

* Prediction gap
e Stability

* Consistency

* Sparsity



Results

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple

German Credit NLIIEI (2) (?; i i i g
Student Performance NLIIEI ?) g 8 ; g (1)
e S

Table 2: Here we aggregate the instances of significant explanation disparity reported in Table 1 across metrics, counting the
number of times significant explanation disparity occurs in the explanation/model/dataset combinations. Across these 36
combinations, explanation disparity occurs in at least one metric 56% of the time.



Key takeaways

* Post-hoc explanations exhibit
subgroup performance disparities.

e What can we do about it?

e Study when disparities in
explanation quality arise

* Develop explanation techniques not
susceptible to such disparities



Security challenges



Security model

e Attack Surface

-------------------------- EEaaa
Physical | { Digital 1 ! Machine Learning E
Domain | | Representation | ! Model

SoK: Security and privacy in machine learning. (Papernot et al., 2018)

...........

* Actors

(Al )
- & 6
Data owners Model End-users
developers
External
23



Attack objectives

e Extracting information about
the data or the model

Confidentiality

e Control (targeted or not) of

Integrity the model prediction

Availability e Deny of service

24




Type of Attacks

Confidentiality Integrity Availaibility

Training Data poisoning Sponge poisoning
Model poisoning

Inference Membership inference | Adversarial Sponge examples
Property inference examples
Model inversion
Model reconstruction



Explanation-
based attacks

|dV uondipald

Case study: counterfactual
explanation

|dV uoijeue|dx3

Model extraction from counterfactual explanations. (Ulrich Aivodji, Alexandre Bolot, Sébastien Gambs, 2020)

26



Counterfactual explanation

Original class: Loan denied

\
1
\

\

———————

Original input

<+<— ML model decision’s
\ boundary

Desired class: Loan approved

- hours_per_week: 20 -> 45
\\ . - education: hs_grad -> masters

X — Counterfactual examples

\ .4—[— occupation: service -> white_collar ]
\

\
I
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Counterfactual explanation

Definition (Wachter et al., 2017)

Given a black-box model b, an original input xq, its predicted outcome yg = b(xo)
and a desired outcome y # y(, a counterfactual explanation c(xg ) for the input xg is

the solution of: c(xg) = argmin yloss(b(c),y) + |c — xo|

C

DiCe (Mothilal et al., 2020)

C(xo) = argmin %Eleyloss(b(c,-),y) + %Ef:ﬂc,- — x0|

C1 4++44Ck

—Aodpp_diversity(cy,...,ck),

28



Counterfactual-based model extraction

Definition

Given a target model b, its prediction API b(-) and its counterfactual explanation AP
C() both available in a black-box setting, a set of data points x1, . . . , X,, build a
surrogate S, &2 b, using an attack process ¥(-), b(x;), and C(x;), withi = 1, ..., n.

() 3 datasets: Adult Income, COMPAS, Default Credit
() Data distribution: known (S1), marginal distributions (S2), unknown (S3)
() Target architecture: known, unknown

O Training data support: used, not used
(O Number of queries: 100, 250, 500, 1000

() # data instances in attack pools:
o Adult Income: 8059

o COMPAS: 1192
o Default Credit: 4948

29



CF-based model extraction for known data
distributions

Training data used

Target model : 2 g A Baseline
Dataset Abchbackiiie 100 Queries 250 Queries 500 Queries 1000 Queries Model
by C(-)
yes 89.02/81.05 92.06/82.94 93.21/83.26  94.22/83.68
Knawo no 80.39/81.47 91.78/82.87 92.17/82.74  94.84/83.88 81.28/76.06
Adult Income
yes 89.27/81.11 92.42/83.18 93.62/83.52  94.65/83.88
koo no 88.09/81.24 92.21/83.05 93.40/83.28 94.89/83.97 | 51:28/76.06
yes 87.13/66.19 91.29/67.30 92.17/67.11  92.85/66.97
known 71.42/61.09
—— no 87.91/65.81 89.57/65.86 92.62/66.49  93.92/66.50
yes 88.13/66.50 90.81/67.26  92.00/67.16  92.36/66.90
unkncwn no 89.12/66.16 90.08/66.03 92.91/66.66 93.43/66.49 | 50:04/64.95
yes 97.09/80.22  97.93/80.55 98.31/80.63  98.57/80.52 .
known 88.52/77.86
BBl Girei no 97.15/80.20 97.77/80.34 97.77/80.34  98.28/80.48
yes 97.08/80.12  97.99/80.57  98.39/80.58  98.39/80.58
unknown no 96.90/80.15 97.52/80.38  97.90/80.4  98.03/80.43 | 55:52/77.86

30



CF-based model extraction for multiple
counterfactuals

_-A
= |
- A— )
94 - e %
. KT
2>
B 92- *
™
. # counterfactuals
* 1
90 + K = 3
A o 5
¥ A_7
250 500 750 1000

# queries



Key takeaways

* Counterfactual explanations can be exploited to conduct high-fidelity and
high-accuracy model extraction attacks under low query budgets

* Making explanations more realistic favors stronger model extraction attacks



Privacy-preserving XAl

* Model Explanations with Differential Privacy. (Neel Patel, Reza Shokri, Yair Zick, 2022)
* Potentially helps prevent membership inference
* Not model reconstruction attacks



Thank you for your
attention!




